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ABSTRACT
[Unclassified)

Thin, layered, and semi-infinite targets have been subjected to high velocity
projectile impacts experimentally, and theoretical calculations performed by the
DORF code for these same target impacts. The DORF code is a two-material,
two-dimensional continuous Eulerian hydrodynamic code coupled with a rigid,
perfectly plastic strength model. In addition, DORF9, a nine-material version of
DORF, has calculated several of the impact experiments. The agreement is good
between the theoretical calculations and experimental values for shock attenu-
ation and projectile length loss.

PROBLEM STATUS
This is a final report on this phase of the project; work is continuing on
other phases.
AUTHORIZATION
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THEORETICAL AND EXPERIMENTAL IMPACT STUDIES
[Unclassified Title]

INTRODUCTION

Significant improvements have been made in the strength and transport formulation
of the DORF code (1). In addition, the code has been modified to allow the treatment
of up to nine different equations of state in the same problem (2).

It was felt that at some point experiments should be perforrned to substantiate the
results from the code calculations. As a result, several impacts into thin, layered, and
semi-infinite targets have been performed experimentally at NRL. Shock-propagation,
shock-attenuation, and projectile-loss comparisons between theory and experiment have
shown very good agreement,

As a result, we feel confident that numerical techniques, such as the DORF code,
can be applied to a variety of interesting problems with a high degree of success,

THE HYDRODYNAMICS AND STRENGTH
FORMULATION FOR THE DORF CODE

The DORF and DORF9 codes numerically solve the Eulerian equations of hydro-
dynamic flow, which are basically statements of mass, momentum, and energy conser.
vation respectively:

9p ) -
—a-t-+ V- (pu)=0

%‘-’;E+V-(puu)-—VP

2E4 v (o) ==V - (Pu),
where

u = flux vector

p = material density

P = hydrostatic pressure

E = gpecific internal energy.

As a separate step, the momentum and energy conservation equations for material
strength are solved:
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where o;jis the streas deviation tensor and the summation and implied differentiation
conventions apply. An elementary flow chart showing the manner and order in which

DORF and DORF9 solve these equations is given in Appendix A. Reference 1 gives a
more complete description of the methodology.

THE EQUATION-OF-STATE MODEL
USED IN THE DORF AND DORF9 CODES

The equation of state used in the DORF and DORF$ codes is given in a report by
Tillotson (8); it ylelds pressure P as a function of volume V and specific internal energy E.

For condensed states, when p/og > 1 or for any cold state when E < E,, the equation
becomes

P=Pp=Ep a+-—————b-——- + Au + Bu?,
E/E n? + 1

where

po = initial (zero pressure) density of material

E, = energy required to bring material to vaporization point
n=plpg
u=n—1

and g, b, A, B, and E, are empirical fits Lo the experimental data. A cutoff is built into

the codes which does not allow the use of u < — A /2B in this equation since this could
allow 3P/3V to be positive.

For expanded states, where p/oy < 1 and E > E,’, the equation of state is

bl -— - o 2 '
P=Pg=akp + {__21_32____ + ape e lte0le) 1)}'3 i(ogle)—1) ' | |
(E/Egn2) + 1

I
where E,' = E, plus the energy of vaporization, and a and § are empirical constants. ‘

In the intermediate region, where n < 1 and E, < E < E,’. a smooth transition
between the condensed and expanded states is assured by set!i .g

P

_Pg(E —E,) + Po(E,' —E) ¢
E; —E, ‘
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When the term E/Ejyn2 << 1, the equation for P, behaves like a Mie-Gruneisen
equation of state with a constant Gruneisen ratio of a + b, At large energies and mod-

erate compressions, E/Eqn? >> b and 4 small, Py behaves like a gaseous equation of state:

P=gapk.
The Gruneisen ratio over all energy and densities for which P is valid is given by

ap b
= V(&) =g+ ———————m |
G(E #) V(0E>v O @IEgn?) + 1

The yield strength is represented by

Y = (Yo + «'P) (1—-;—"-),
m

where a' is approximately 0,07 for metals and E,, is the energy required to melt the
material, If E is greater then E,,, Y is set to zero.

The stress deviators are defined as

GU - Bé”,

where . Y3

véij €
0;; = siress deviation tensor
€;; = strain rate deviation tensor

and the summation convention again applies.

COMPARISON BETWEEN CALCULATIONS AND EXPERIMENTS

Shock Propagation into Semi-Infinite Targets for Like and
Unlike Material Hypervelocity Impacts (DORF and DORFY)

Two shock propagation experiments, hereafter referred to as shot 1 and shot 2,
were performed, and the corresponding code calculations completed using DORF and
DORF9.

Shot 1

A 3/8-in,-diameter aluminum sphere was impacted normally into a semi-infinite
1100F aluminum target at 7.091 km/sec. The decay of the on-axis peak pressure of
the shock wave was observed using manganin pressure gauges imbedded at various points
within the aluminum target (4). Additional experimental data was obtained from the
work of Charest (5), who obtained peak pressures vsing free-surface particle velucity
techniques. Both sets of data are shown in Fig. 1. The DORF code was then used to
calculate this same impact, and t'~ calculated pressures were compared with the
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Fig. 1 — Configurution and experimental data for shot 1

experimental values, The results were somewhat disappointing at first because the DORF
code values were consistently lower than either of the experimental measurements, although
there was a convergence in the lower pressure regions (large distances from the impact
point), Reasons for the discrepancy were difficult to find, and suspicion finally settled

cn the Tillotson equation of state for aluminum.

A plot of shock velocity U, versus particle velocity U, was derived from the Tillotson
formulation, and the rosults were comnpared wilh the expenmental data of Rice, McQueen,
and Walsh (8) and of Al’tshuler et al (7). As shown in Fig. 2, the Tillotson equation
starts deviating from the experimental values fairly quickly, reaching a value for U, that
is about 8% low at the Hugoniot conditions for shot 1 (U, ~ 3.6 km/sec.). This means
that the Tillotson equation of state would predict a Hugoniot pressure that is 8% low
for shot 1. This, combined with the generally more compressible (than reality) nature
of the Tillotson formulation over the whole range of compression, could conceivably
affect both the magnitude and decay rate of the calculated shock wave. To determine
whether or not this reasoning applied, a simple Mie-Gruneisen equation-of-state option,
using the Hugoniot as the reference pressure curve, was inserted into DORF. The
equation of state used the following standard equations:

e AR b GLAN L Vsl A
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P=Py + Gp(F —Ey)
and
poCOW
Py = e
(1—AW)2
where

Ey = (112)Py(Vy ~ V)
W=1-—(og/p)

P = 2,71 g/ec
G=~213

Co ~ 6.38 km/sec

A = 1.3817.
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The last two constants come from
Uy = Cqo + AU,
and fit the experimental data quite well as can be seen in Fig, 2,

Since our impact is basically a shock propagation problem, the material values near
the region of interest shouid deviate very little from the Hugoniot values, Hence, this
equation of state should give highly accurate results.

Shot 1 was then run on DORF using this refined equation of state, and the results
ugain were compared to the experimental values. This time the code gave very satisfying
results in terms of their deviation from experimental parts, Both DORF calculations are
compared to both experimental determinations in Fig, 3. Axial pressure plote for selected
times after impact are shown in Fig. 4. These pressure plots, as well as all others that
follow in this report, are derived by assuming that the pressure in a cell represents the
pressure at the geometric center of that cell. Peak shock wave pressure is taken to be
the largest cell pressure in a given region of interest, and the shock front position to be
the geometric center of that cell,
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Fig. 4 — Axial pressure plots for shot 1 for selected times after impact

It is clear that shock propagation calculations ure extremely sensitive to the equation
of state used and that great care should be exercised in selecting an equation of state for ;
such calculations. An unquestioned use of the Tillotson formulation would probably have
resulted in the conclusion that Eulerian codes are not particularly suited for the calculation
of shock wave propagation problems, It should be pointed out, however, that the Tillotson
aluminum equation of state is meant to be used over a much wider range of material con-
ditions than was necessary for this culculation. Also, its unsatisfactory performance for
this particular calculation does not necessarily invalidate its use in other calculations, The
Tillotson equation of stute is probably quite satisfactory for hypervelocity impact caleu-
lations where the primary interest lies in the computation of projectile or target deformation.
It applies in these cases because most of the physical processes involved oceur at pressures
much lower than the Hugoniot pressure, where the Tillotson form deviates very little from
experimentully observed values, i

Shot 2 I
i

A 1.27-cm-diameter steel sphere was impucted normally into a 2.6-¢cm layer of lithium .
hydride, hacked by a 4.6-cm layer of Composition B high explosive, at 5.5 km/sec. The
primary interest was in the peak pressure and pulse shape of the shock wave just after it
entered the Composition B, Experimentally there were two sources of information:
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EXPLOSIVE Fig. 6 — Configuration for shot 2

Table 1
Pressure Results for Shot 2
Method of Pressure Entering

Pressure Measurement Composition B (kilobars)
Shock velocity in n0

Composition B
Run distance in 67

Composition B
DORF9 calculation 70

(a) measurement of the shock velocity just inside the Composition B yielded a peak
pressure of 70 kilobars and (b) measurement of the run distance to detonation in the
Composition B yielded a peak pressure of 67 kilobars, assuming a pulse width of 0.5 usec
or more. The DORFY valculation yielded a peak pressure of 70 kilobars and a pulse width
of sbout 1 usec, (In the DORF9 calculation, the Composition B was treated as an inert
substance, No attempt was made to numerically simulate the detonation process.) The
shot configuration is shown in Fig. 5, and results are given in Table 1. Shock pressure
profiles on axis ave shown for various times after impact in Figs. 6 through 9, Again,

the agreement bétween calculated and expetimental results is quite satisfactory,

Additional Calculations

in addition to the above, two other similar calculations were performed without
experimental counterparts and are referred to as shot 2A and shot 3. The shot configu-
rations are shown in Fig. 10, As can be easily seen, shot 2A has the same configuration
as shot 2 but with the Composition B replaced by additional lithium hydride. Shot 3 is
the same as shot 2A, but with a 0.16-cm steel plate in front of the lithium hydride. The
axial peak pressure decay curves for both shots are shown in Fig. 11. As can be seen,
the effect of the frontal steel plate in shot 3 becomes damped out at large distances from
impact. Pressure versus axial distance from impact plots for shot 2A are shown for four
selected times after impact in Fig. 12. In addition, relative densities for shot 2A at four
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selected times are presented in Fig. 13, The method of display is to plot within a cell a
number of randomly scattered particles proportional to the relative density in that cell,
These particles are not carried as part of the calculation, as are the massless “‘tracer
particles,” but are created as a means of displaying data only.
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Fig. 11 — Peak shock wave pressure
attenuation curves for shots 2A and 3

Fig. 10 ~ Impact configurations for
shots 2A and 3
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Single-Plate Rod Impact Calculations (DORF)

The impact of end-oriented metal rods into relatively thin metal plates has been
extensively studied, with particular interest attached to the length and velocity loes of the
rods after penetration of the plate, Sets of analytical equations for these quantities have
been developed which agree quite closely with experimental results, Using the DORF
code, seven rod impact calculations were made using single-plate targets to determine the
accuracy with which the code could predict rod length loss and residual velocity. The
basic configuration and zoning of the problems and tracer particle plots of the impact
process are presented in Figs. 14 and 16. The equation-of-state constants used in the
caloulations are shown in Table 2 and the numerical results in Toble 3. The results are
quite good, with rod-length-loss calculations differing by no more than about 6% from
the experimental values. The residual velocity comparison fares even better, but it should
be kept in mind that both the calculated and experimental velocity losses are extremely
small, Hence, the residual velocities differ little from the original impact velocities.

The DORF calculations made for this study provided the answer to a question that
has been a subject of discussion for quite some time, The analytical approach used in
the development of the equations for rod length loss has as one of its hypotheses that
the extra length loss over and above that which would be expected from steady-state
incompressible flow theory was caused by the initial shock and rarefaction of impact
shattering the frontal portion of the rod, However, the experiments of Christman and
Gehring (8), where rods were actually x-rayed as they penetrated thick targets, indicate
that this is not the case. Also, other projectile configuration experiments at NRL indicate
that the extra rod length loss is not a shock-rarefaction phenomenon, To resolve this
question, the results of the DORF calculation for an aluminum rod into an aluminum o
plate with a rod diameter of 1 c¢m, a plate thickness of 4 cm, and an impact velocity of i
4.8 km/sec are plotted in Fig, 18, The solid line shows the rod length loss as a function i
of rod front position that would be predicted by steady-state incompressible flow theory. ‘
The DORF data points do not deviate significantly from this line until the rod front is
past the original back of the plate, indicating that the extra rod loss is not a shock-
rarefaction phenomenon, but is associated with the breakout of the rod from the back
of the target. |

Low.Velocity Multimaterial Impact (DORF9)

Two important features of the DORF9 code for impact calculation purposes are its
ability to treat up to nine different materials in a problem and its ability to treat material
strength (using a rigid plastic model). Both of these features were tested by calculating
the low-velocity (3.048 km/sec) impact of a steel cylinder into an ablative layer backed
up with aluminum. The impact configuration is shown in Fig. 17. The equation-of-state
constants used in the calculation are listed in Table 2, The results are highly strength
dependent, since the projectile will be deformed and decelerated by the impact, but will
do very little actual flowing. Figure 18 compares the calculated projectile configuration
after impact, using a tracer-particle plot and an actual photograph of the projectile after
impact. The similarity is very close. Calculated residual length is 70% versus 88% experi- *
mental. Calculated residual velocity is 2.64 km/sec; the experimentally measured value is '
2.60 km/sec,
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Fig, 16 — Rod length loss va rod front position in target for 1.cm-diameter 10 cm long
aluminum rod impacting a 4-cm-thick aluminum plate at 4.6 km/sec
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CONCLUSIONS

The experiment-code comparisons that have been presented here obviously reflect
very favorably on the ability of the codes to predict reality. It should be pointed out,
however, that only certain specialized phenomena were considered in this study: shock-
wave pregsure attenuation, projectile length loss, deformation and velocity loss, and total
target penetration. Lateral damage to the target was not considered (the problems were
zoned finely only near the projectile trajectory axis, leaving coarse zoning in those regions
off the axis where one might expect the lateral damage to be defined). However, good
correlation for lateral damage to cadmium plates impacted by cadmium spheres, as well
as for pressure distribution on a second plate, has previously been reported by one of the
authors (9). It is felt that the codes are extremely useful tools for hypervelocity impact
problems, as long as care and an understanding of their weakness are exercised. 1t is
highly probable that other fields of endeavor could henefit from their utilization,
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Appendix A

SIMPLIFIED FLOW CHART FOR DORF9

l START

READ THE DUMP TAPE FOR THE CORRECT CYCLE NUMBER.

RECYCLE

coT

\

CALCULATE THE HYDROST/.TIC PRESSURE FROM THE EQUATION
OF STATE AND THE TIME STEP (At) FROM BOTH THE COURANT
CONDITION AND THE PARTICLE VELOCITIES.

EDIT

\

CALCULATE INTEGRAL QUANTITIES, PRINT CELL QUANTITIES,
- DUMP VARIABLES FOR 'RESTART OR FOR PLOTTING.

PH1

[

THE EQUATIONS OF CONSERVATION OF MOMENTUM AND ENERGY
{DUE TO PRESSURE FORCES ONLY) ARE SOLVED. SINCE NO MASS
IS MOVED AT THIS STAGE OF THE CALCULATION, PHASE 1 IS IDEN-
TICAL TO A LAGRANGIAN CALCULATION. NOTE THAT THE TRANS-:
PORT TERMS ARE TEMPORARILY DROPPED.

CONSERVATION OF MOMENTUM:

du
Pat " -VP
CONSERVATION OF ENERGY:
of
P35 " ~PV * u

y
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L PH3

HERE THE DEVIATORIC STRESSES (RIGID PERFECTLY PLASTIC) ARE
COMPUTED AND THEIR CONTRIBUTIONS TO THE VELOCITIES AND
ENERGY ARE ACCOUNTED FOR. THESE DEVIATOR STRESSES 0 ARE
FUNCTIONS ONLY OF VELOCITY GRADIENTS, WHERE THE VELQC-
ITIES TO BE USED ARE THOSE FROM PHASE 1. IN TENSOR NOTATION
THE EQUATIONS, AGAIN DROPPING TRANSPORT TERMS, ARE:

CONSERVATION OF MOMENTUM:

au,-

PoE "t i
CONSERVATION OF ENERGY:

L o)

P gty

HERE E IS THE TOTAL ENERGY PER GRAM, INTERNAL PLUS KINETIC.

PH2

]

FINALLY, THE TRANSPORT TERMS, THAT WERE TEMPQRARILY

OMITTED IN PHASE 1 AND PHASE 3 ARE SOLVED FOR, AND THE
MASSES, VELOCITIES, AND SPECIFIC INTERNAL ENERGIES ARE

INTEGRATED TO TIME t + At

CONSERVATION OF MASS:

o
— . -
3t Cpu=0

CONSERVATION OF MOMENTUM:

dpu
) -V ' (puu)

CONSERVATION OF ENERGY:

a—pé--v-puE

]

RECYCLE

I

-5
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